Who Goes on Disability when Times are Tough? The Role of Work Norms among Immigrants*

Delia Furtado, University of Connecticut
Kerry L. Papps, University of Bath
Nikolaos Theodoropoulos, University of Cyprus

June 27, 2020

Abstract

We examine how work norms affect Social Security Disability Insurance (SSDI) take-up rates in response to worsening economic conditions. By focusing on immigrants in the US, we can consider the influence of work norms in a person’s home country, which we argue are exogenous to labor market prospects in the US. We find that the probability of receiving SSDI is more sensitive to economic downturns among immigrants from countries where people place less importance on work. We also provide evidence that this result is not driven by differential sensitivities to the business cycle or differences in SSDI eligibility.

Keywords: Disability Insurance, Immigrants, Social Norms, Unemployment Rates

JEL Classification: H55, J61, I18, J15

* Contact information: Furtado: Department of Economics, University of Connecticut, Storrs, CT 06042, tel: 860-486-0615, email: Delia.Furtado@uconn.edu; Papps: Department of Economics, University of Bath, Bath, BA2 7AY, United Kingdom. tel: +44-1225-384 338, email: k.l.papps@bath.ac.uk; Theodoropoulos: Department of Economics, University of Cyprus, P.O. Box 20537, CY-1678 Nicosia, Cyprus, tel: 00357-22893715, email: n.theodoropoulos@ucy.ac.cy. This is a significantly revised version of the paper, “Who Goes on Disability when Times are Tough? The Role of Social Costs of Take-Up among Immigrants.” We are grateful to Eric Gould, Lucie Schmidt, and several careful referees as well as participants at the 2018 Michigan Retirement Research Center (MRRC) researcher workshop, the 2018 SHARE meeting in Malta, the 2nd Annual Dulbea Workshop on the Economics of Disability, the 2020 EALE-SOLE-AASLE World Conference, and brownbag/seminar participants at the University of Cyprus and the University of Connecticut.
1 Introduction

The recent global economic shutdown as a result of the COVID-19 pandemic has left millions of unemployed Americans competing for scarce jobs. Evidence from previous recessions suggests that many of them are likely to respond to job loss by leaving the labor force altogether and applying for disability payments (e.g. Maestas, Mullen and Strand 2018). This proclivity is likely to be stronger during the pandemic given that returning to work before a vaccine is available poses significant risk for older workers as well as those with preexisting conditions, the very population which is likely to have some form of disability. As policymakers consider potential changes to how disability payment awards are made in response to a potentially long and deep recession, it is important to consider the drivers of the decision to apply for disability among the pool of potential applicants who are physically able to work, perhaps despite hardship. This paper exploits variation from past recessions to help understand the role of one particular potential determinant of Social Security Disability Insurance (SSDI) take-up decisions: perceptions about people’s responsibility to work to the extent that they can.

Previous studies have documented the significant role that social norms regarding work play in determining length of unemployment spells (Eugster, Lalive, Steinhauer and Zweimüller 2017; Stutzer and Lalive 2004). A large literature showing that unemployed people express more life satisfaction, relative to the employed, in countries with weaker work norms (e.g. Stam, Sieben, Verbakel and De Graaf 2016, Roex and Rozer 2018) provides some evidence that these relationships are driven by job search behaviors as opposed to labor demand conditions. However, because work norms are likely to weaken in response to worse labor market conditions (Clark 2003) or more generous welfare payments (Lindbeck, Nyberg and Weibull 2003), estimating causal impacts of work norms is difficult.
We contribute to the literature on work norms in two important ways. First, we focus on disability insurance take-up, which in the US can be seen as a more or less permanent exit from the labor force, and, specifically, take-up during recessions. This is important because it allows us to pinpoint impacts on a population that is capable of working when jobs are available. SSDI applications and awards tend to increase during economic downturns and then fall shortly after the unemployment rate peaks (Maestas, Mullen and Strand 2015; Maestas, Mullen and Strand 2018; Mueller, Rothstein and von Wachter 2016). Assuming that the timing of onset of work-preventing disabilities is relatively random, this suggests that there are individuals who, despite knowing that their level of disability might qualify for SSDI, only find it worthwhile to apply when their opportunities in the labor market are sufficiently poor. By considering what determines whether one goes on disability in response to an increase in the unemployment rate, we can identify the drivers of take-up among these so-called “conditional” applicants even without being able to identify whether a particular person in our dataset is eligible for SSDI.¹

Second, we address endogeneity concerns by focusing on immigrants. Immigrants bring with them their cultural background when they emigrate and so their behavior in the US is likely to be influenced by the norms of the places from which they have come. These work norms are unlikely to be affected by US labor market and safety net policies, so we can be confident that any effect they have on SSDI take-up is not affected by reverse causality. Moreover, by focusing on the decisions of immigrants to take-up SSDI in response to changes in the unemployment rate, as opposed to considering take-up patterns across the general population, we are able to include country of origin fixed effects in our specifications to account for time-invariant country of origin specific tendencies to become disabled.

¹ Identifying conditional applicants does not simply require information on a person’s level of disability. Two people with the exact same level of disability may make different decisions regarding SSDI take-up as a result of, for example, differences in preferences for work despite severe back physical pain or differences in access to employers willing to accommodate their disabilities.
We hypothesize that among conditional applicants, perceptions of a moral obligation to work might be an especially important driver of decisions. Any personal moral views are likely to be reinforced within communities with similar values. Friends and family members are likely to pass judgement on SSDI recipients who are deemed both physically able to work and capable of finding a job while at the same time supporting recipients who are not able to work. Even the strongest work norms cannot keep in the labor force those who are so disabled they are incapable of working. However, for someone who is at the margin, work norms may play a pivotal role in the decision to apply for SSDI.

We start our analysis with a simple conceptual model describing the potential relationships between work norms and take-up rates. Not surprisingly, our framework predicts that weaker work norms and higher unemployment rates both increase SSDI take-up rates. More interestingly, our model demonstrates that under reasonable assumptions, an increase in people’s perceptions of the importance of work results in weaker responses to a given increase in the unemployment rate – a theoretical implication we test with the data.

To measure work norms, we gather information from the Integrated Values Survey (IVS) on responses to a question on whether people have a duty to work. We then use data on immigrants from the American Community Survey (ACS) for the years 2001-2016, merged with origin country data on work norms from the IVS, to examine whether controlling for country of origin fixed effects, state-year fixed effects, and other individual characteristics, the probability of immigrants going on SSDI during economic downturns is affected by the strength of work norms in their home countries.

We show that immigrants from countries where less emphasis is placed on people’s duty to work are more likely to go on disability in response to increases in unemployment rates than immigrants from countries where people strongly agree that people have a duty to work. It is rather noteworthy that perceptions about the importance of work play a role at all
in recession-driven take-up decisions given that once people enter SSDI they rarely rejoin the labor force, even after the economy recovers. This creates efficiency losses for the economy as a whole and income losses for individuals who might have earned higher incomes by remaining in the labor market (Maestas et al. 2018). Interestingly, we show that when comparing the role of values regarding the importance of work to values related to taboos against stealing from the government, it is the work norms that play the driving role.

While our baseline findings are consistent with our theoretical model, there are other potential interpretations of our results. Of particular concern is the possibility that immigrants from countries with weak work norms are more adversely impacted by economic downturns because of the types of jobs they tend to have. We conduct several additional empirical analyses to provide evidence that this is not the main driver of our findings. First, we replace our state-year unemployment rates with education-specific, occupation-specific, and industry-specific state-year unemployment rates. Next, keeping only those immigrants in the labor force, we examine whether home country work norms affect the relationship between the unemployment rate and labor market outcomes. Our results suggest that variation in experienced severity of economic downturns is not the driving force behind our baseline results.

Beyond differential sensitivities to the business cycle, our results may also be driven by other factors that happen to be correlated with home country work norms. To address this type of concern, we control for a series of interactions between the unemployment rate and country of origin-level characteristics such as average schooling, home country GDP, and even SSDI take-up in a past year. Our results are robust to these controls. Tests for heterogeneity by English language fluency, age, and gender also suggest that groups that are likely to be most affected by ethnicity-specific work norms, according to existing literature, are indeed more sensitive to these norms.
For further analyses, we then turn to the Current Population Survey (CPS) for its better measure of SSDI participation, information on general health, and information allowing us to predict likely documentation status of immigrants. Our baseline findings hold up, despite the CPS’s significantly smaller sample sizes. Our results are also robust to controlling for a measure of immigrants’ self-perceived health status. We find that dropping immigrants who are likely to be undocumented strengthens our main findings suggesting that our baseline results are not driven by variation in immigrant documentation status across origin groups. The CPS also allows second-generation immigrants to be identified. Among this group, take-up decisions are found to be especially sensitive to the unemployment rate for people whose fathers (but not mothers) are from countries with weak norms.

The remainder of the paper proceeds as follows. Section 2 provides some background on the Social Security Disability Insurance program and discusses how our analysis contributes to the existing literature on both SSDI take-up and work norms. Section 3 outlines our theoretical background, and Section 4 presents our data sources. Section 5 presents our empirical strategy and outlines the main results. Section 6 presents results from a complementary data source. Section 7 concludes.

2 Background

2.1 The Social Security Disability Insurance Program

Social Security Disability Insurance is a federal program in the U.S. designed to provide income to people who are unable to work as a result of a physical or mental disability. To be eligible, an applicant must satisfy work history requirements (“technical requirements”) and provide sufficient evidence of disability (“medical requirements”). In terms of work history, applicants must generally have worked at least five of the past ten years and ten years in their
working lives, but the actual rules depend on the applicant’s age and are fairly complicated.2 Documented immigrants, regardless of whether they are citizens, qualify for SSDI as long as they have the necessary work experience in formal sector jobs.3 Undocumented immigrants do not qualify for the program.

Because the Social Security Administration defines disability as the inability to perform substantial gainful activity (SGA), applicants must be out of work for five months after their determined "onset" date before receiving benefits—although technically they are allowed to work as long as they do not earn more than the amount determined as SGA—in 2017, this was $1,170 per month.

While local offices confirm that applicants satisfy the technical requirements and collect the medical evidence provided by medical doctors, the medical evidence is examined at Disability Determination Offices. Examiners first evaluate whether the impairment is severe and whether it is expected to last more than a year (or likely to end in death before that), but even if they determine it is, the claim will not be allowed if the claimant is able to perform his or her past work or any work in the US economy. This determination is based not only on the person’s disability level but also his or her age, past work experience, and education. An application of a person who is unable to perform physically demanding work may be denied for a person who has the education and experience to work in an office job, but approved for a person who would not qualify for such a job.4

In general, only about a third of applicants are awarded benefits at the first determination (Maestas, Mulligan and Strand 2013). Denied applicants can and often do

2 For further details about the work history requirements, see the Social Security Administration website at https://www.ssa.gov/planners/credits.html.
3 In contrast, non-citizens generally do not qualify for Supplementary Security Income (SSI), the other major income-support program for people with disabilities, even if they are legal permanent residents.
4 During the Great Recession, a substantially larger share of SSDI awardees were awarded based on “vocational” considerations (Maestas et al. 2018) implying that many were marginal applicants; had they had the same disability but were of a different age or had a different level of education, they would not have been awarded benefits.
appeal initial decisions. Thirty-five percent of denied applicants appeal and most of those who appeal eventually have a hearing before an Administrative Law Judge (Liebman 2015). There are several different levels of appeals starting with a simple reconsideration determination and ending with a trial in a US district court. The appeals process can be long, difficult, and expensive, but appeals are often eventually successful. In general, two thirds of all initial applications are eventually awarded (Maestas, Mullen and Strand 2013). Around 40 percent of Great Recession-induced applications were eventually awarded (Maestas et al. 2018) despite the fact that applicants were far more likely to have only marginal disabilities.

2.2 Economic Conditions and SSDI Applications

Exploiting plausibly exogenous local labor demand shocks, several papers have shown that worse labor market conditions result in higher SSDI take-up rates. In a seminal article, Black et al. (2002) find that disability claims increase in coal-producing counties when energy prices drop and decrease when prices increase. Building on this research, a recent paper conducts a similar analysis focusing on the oil and gas industries and finds similar results (Charles et al. 2018). Using an even more general source of variation in local labor demand conditions, Autor et al. (2013) uncover large increases in disability program take-up in labor markets that are more intensely exposed to Chinese import competition.

In terms of the impact of recessions on SSDI, Duggan and Imberman (2009) found that nearly 25 percent of the increase in male SSDI participation in the late 20th century was due to recessions. While this cyclicality has decreased in more recent years (von Wachter 2010), there were rather large increases in SSDI awards during and shortly after the Great Recession (Maestas et al. 2018, Mueller et al. 2016).5 Surely there are some people who are

5 One potential explanation for these patterns is that displaced workers turn to the SSDI program for income when their unemployment insurance (UI) payments run out (Mueller et al. 2016). Exploiting plausibly exogenous variation in the duration of UI benefits during the Great Recession, Mueller et al. (2016) fail to find any evidence of this and conclude that the relationship between recessions and SSDI is most likely driven either
so disabled that they choose SSDI regardless of economic conditions and others who are insufficiently disabled to ever do so. However, the cyclicality of SSDI take-up suggests that, there is a subset of the population that only takes up disability if their labor market prospects are sufficiently poor. While we know from prior research that these applicants tend to have less severe disabilities, little is known about the factors driving the application decisions of this population. We contribute to this literature by examining whether people with different work norms and values react differently to business cycle fluctuations in terms of take-up decisions.

2.3 Work Norms

A social norm is a “behavioral regularity that is based on a socially shared belief of how one ought to behave” (Fehr and Gachter 2000). Work norms can be thought of as a set of expectations that able-bodied individuals should support themselves through work. These beliefs about what constitutes appropriate behavior are often transmitted from parents to children (Lindbeck and Nyberg 2006), but norms are also enforced within social circles. Deviating from the social norm to work can result in internal sanctions in the form of guilt as well as external sanctions in the form of shame and social exclusion (Lindbeck and Nyberg 2006; Roex and Rozer 2018).

Several studies have shown that subjective well-being of the unemployed is lower in countries with strong work norms, presumably because of stigma connected to unemployment (Stam et al. 2016; Stavrova, Schlösser and Fetchenhauer 2011). Even by changes in the Social Security Administration’s judgment of people’s potential to work or changes in the relative attraction of SSDI benefits for marginally disabled workers with worse labor market prospects. Using data from before the Great Recession, Lindner (2016) finds an economically, but not always statistically significant substitution effect between UI and SSDI.

To borrow terminology from the treatment effects literature, those who only take-up SSDI if they cannot find an adequate job are the “compliers”, in contrast to the “always takers” or “never takers”.

During the Great Recession, applications were more likely to be denied initially (Maestas et al. 2015) but then awarded on appeal (Maestas et al. 2018). Moreover, significantly fewer of the recession-induced awardees had impairments that were severe enough to automatically qualify for SSDI (Maestas et al. 2018).
conditional on own work ethic, the unemployed living in countries with stronger work norms report lower levels of well-being, relative to the employed, compared to those in countries with weaker work norms (Roex and Rozer 2018). Work norms vary across location, but prescriptions regarding whether a person should be employed also vary by that person’s age. Hetchko et al. (2013) show that the unemployed report increases in life satisfaction when they hit retirement age even though their day to day life does not change very much. This result is consistent with Akerlof and Kranton’s (2000) model of identity whereby utility is derived from adhering to the social norms specific to one’s social category.

Self-imposed guilt from failing to live up to society’s standards as well as social sanctions and shame can lead to changes in labor market outcomes. Using voting outcomes on a referendum to increase unemployment benefits as a measure of work norms, Stutzer and Lalive (2004) show that the stronger the work norm, the faster the unemployed find jobs. Comparing job search behaviors of unemployed workers along the Swiss language border, Eugster et al. (2017) show that Romance language speakers search for work for about two months more than German speakers despite the fact that they are in the same labor market and have access to the same institutions. Bertrand, Luttmer and Mullainathan et al. (2000) show that immigrants residing amidst a large number of co-ethnics are especially likely to receive welfare payments if they belong to high welfare-using language groups. They interpret this result as evidence that social networks affect welfare participation, but they are not able to distinguish between networks operating through information sharing about welfare programs or through changing stigma associated with welfare participation.

We might conclude from this literature that work norms impact work decisions, but there is also literature suggesting that work decisions impact work norms. Using data on self-reported wellbeing from several different countries, Clark (2003) shows that the unemployed are happier when they are living in countries with higher unemployment rates. This is
important given Lindbeck, Nyberg, and Weibull’s (1999, 2003) theoretical models showing that if work norms decrease as more people deviate from these norms, then even temporary increases in the unemployment rate (or generosity of a welfare program) can result in permanent increases in the number of welfare beneficiaries. A particularly deep recession could thus lead to an eventual collapse of the welfare state (Lindbeck et al. 1999). Using a model of parental transmission of work norms, Lindbeck and Nyberg (2006) show that when social insurance programs become more generous, parents have less of an incentive to instill work norms in their children. If weaker work norms then provide even more of an incentive to take-up welfare benefits, the full impacts of a change in welfare policy will only appear several generations after its implementation.

We contribute to this broad literature on work norms by examining the role of work norms in the decision to take-up disability insurance. There is evidence in the literature that children whose parents received disability payments may face lower (utility) costs of participation in the program. Exploiting variation arising from the random assignment of judges to disability insurance applicants whose cases are initially denied, Dahl, Kostøl and Mogstad (2014) show that adult children whose parents were on disability are more likely to participate in disability themselves. Answering the same question but exploiting a different source of exogenous variation, Dahl and Gielen (2020) reach the same conclusion. Our paper considers one particular mechanism potentially driving the vertical transmission of disability program participation from parents to children: Parents receiving disability payments may be less likely to transmit values regarding the importance of work to their children.

8 Corneo (2012) argues that under certain reasonable assumptions, parents will not necessarily respond to a more generous welfare state by imposing weaker work norms. He shows empirically that within country changes in social spending as a fraction of GDP do not result in statistically significant changes in self-reported work ethic. Corneo (2013) presents a theoretical model in which an equilibrium characterized by weak work norms and generous social insurance may be desirable in that it is associated with more intergenerational occupational mobility than an equilibrium with strong work norms and little social insurance.
2.4 The Epidemiological Approach

The theoretical work on the importance of work norms is compelling, and there are certainly several empirical papers pointing to a relationship between work norms and labor market outcomes. However, it is difficult to interpret these as causal impacts given the theoretical and empirical evidence that work outcomes affect work norms. To address this issue, we follow the epidemiological approach by linking behaviors of immigrants in the US to norms in their home countries (see Fernández (2011) for a review of the epidemiological approach to uncovering the role of norms).

The idea behind this approach is that immigrants are subject to the labor markets and institutions of their home countries but bring with them the norms and culture from their home countries. Blau et al. (2011) and Fernández and Fogli (2009) show that higher country of origin fertility and female labor force participation rates are associated with higher employment and fertility rates among first-generation and second-generation immigrants in the US, respectively. Using similar approaches, other researchers have uncovered a role of culture in determining divorce decisions (Furtado et al. 2013), living arrangements (Giuliano 2007), participation in the stock market (Osili and Paulson 2008), and the decision to take out a large mortgage (Rodrigues-Planes 2018).

2.5 Immigrants and SSDI Take-Up

Using an approach similar to that of Bertrand et al. (2000), Furtado and Theodoropoulos (2016) show that immigrants residing amidst a large number of co-ethnics are especially likely to receive disability payments when their ethnic groups have higher take-up rates, suggesting that network effects play a role in SSDI take-up. In a separate analysis, they show that while immigrants in networks with high Supplemental Security Income (SSI) for disability participation are more likely to apply for SSI for a disability, conditional on
applying, they are in fact less likely to be awarded benefits (Furtado and Theodoropoulos 2013). This suggests that high take-up ethnic networks induce people with marginal disabilities to apply for benefits, but applications of people with marginal disabilities are often denied. Consistent with this general idea, Borjas and Slusky (2018) show that the relationship between medical conditions and self-reported disability status is stronger for the foreign born with legal status than for those who are likely to be undocumented. They interpret this finding as evidence that workers who are eligible for SSDI exaggerate their disabilities in order to receive benefits.

The question we ask in this paper is what determines which immigrants go on disability when hit with an economic shock and which continue working (or searching for work) despite having a disability that would qualify for benefits? We answer this question by linking the literatures on the role of norms and culture with the literature on the cyclicality of SSDI take-up. As discussed previously, SSDI benefits are intended for people who are no longer able to work because of a physical or mental disability; the SSDI program is not structured to provide unemployment insurance. By considering how work norms affect recession-induced take-up decisions, we are able to identify the effect of these norms specifically on individuals who would prefer to and are able to work despite having a disability severe enough to be awarded benefits.

3 Theoretical Background

While the SSDI program is intended only for people who are unable to work due to a disability, because disability is very difficult to observe and costly to verify, a major determinant of who ends up on disability is who decides to apply for benefits (Deshpande and Li 2019). In this section, we lay out a framework for thinking about how individuals make decisions about whether to apply for SSDI, focusing on how work norms might impact the
way a change in the unemployment rate translates into take-up rates, through their effect on the costs of participation.

We assume that an individual who qualifies for the program (i.e. who is legally in the U.S. with the necessary work experience and some documentable disability) applies if the expected benefits of participation exceed the costs of take-up. We can conceptualize the benefits of participation as the net utility a person would obtain from leaving the labor force but receiving monthly SSDI payments. We can think about these benefits as equal to the difference between the monthly income benefits provided by SSDI, \(D \), and the expected income from working. We let the expected income from working be equal to the person’s wage income, \(w \), weighted by the expected probability of having a job. We assume that this expected probability of having a job is equal to 1 minus the unemployment rate, \(U \). Thus, benefits can be written, \(D-(1-U)w \).

It is also reasonable to assume that the wage a person can receive in the labor market is a decreasing function of the person’s disability severity, \(S \). This can be because the disability makes the person less productive while on the job or because the disability requires workplace accommodations and the cost of these accommodations are borne by the worker in the form of lower wages. For simplicity, we assume that \(S \) is uniformly distributed and varies between 0 and 1, taking the value 0 for those who are not at all disabled and 1 for those that are completely disabled.\(^9\) We also assume that wage income is a linear function of disability severity, \(w = a - bS \) and that both \(a \) and \(b \) are positive. In order to ensure that wage income is never negative, we assume that \(a \) is greater than \(b \). Benefits from SSDI take-up can thus be written as,

\[
\text{Benefits} = D-(1-U)w = D-(1-U)(a-bS)
\]

Note that because \(a > b \), the benefits of SSDI take-up will always increase when the

\(^9\) Allowing \(S \) to have a more realistic distribution does not change the basic predictions of the theory, as shown in the appendix.
unemployment rate increases.

We assume that the direct costs of applying for SSDI are the same for everyone. However, the psychological costs of take-up will be higher for people with strong work norms. People who believe that working is a moral imperative will pay a higher non-pecuniary cost to leaving the labor force to receive benefits, both because they have a stronger individual preference for working and because of the social stigma involved in such a decision. Total costs are assumed to be equal to \(C \),

\[
\text{Costs} = C
\]

To make the problem interesting, we assume without loss of generality that \(C < D \) since if \(C > D \), then even someone with zero wages would not apply for SSDI.

Individuals will apply for SSDI if the benefits of SSDI exceed the costs. If the benefits of SSDI participation are increasing in disability severity and the costs are constant, then there exists a disability severity, \(S^* \), such that people with a disability level lower than \(S^* \) choose not to apply for benefits and people with more severe disabilities do apply.\(^{10}\) In our model, \(S^* \) can written,

\[
S^* = \frac{a(1-U) - (D-C)}{b(1-U)}
\]

Given the assumption of a uniform distribution for \(S \), the probability of choosing SSDI is then equal to:

\[
P(S > S^*) = 1 - \frac{a(1-U) - (D-C)}{b(1-U)}
\]

\(^{10}\) We assume that costs are not a function of disability severity for simplicity. It is certainly possible, however, that applying for SSDI (and asking doctors to fill out paperwork documenting the disability) comes at higher costs for people with less severe disabilities given the knowledge that the SSDI program is meant for people who are unable to work. Moreover, paying expensive lawyers is likely to be more important for people with relatively minor disabilities. Making costs a decreasing function of severity would complicate our model slightly but would not change the model’s predictions. A more serious issue would be that application costs are increasing in disability, as would be the case if people with more severe disabilities find it especially difficult to fill out an application (see Deshpande and Li 2019). However, even in this case, we can solve for \(S^* \) as long as disability severity has a larger impact on the benefits of SSDI than on the costs of application, an assumption we believe to be very reasonable. In any of these cases, the basic intuition provided in this section remains relevant.
and so we can derive the following comparative statics:

\[
\frac{\partial P(S > S^*)}{\partial U} = \frac{D - C}{b(1-U)^2} \tag{2}
\]

\[
\frac{\partial P(S > S^*)}{\partial C} = -\frac{1}{b(1-U)} \tag{3}
\]

Because we assume \(C < D \), equation (2) implies that an increase in the unemployment rate will result in an increase in the probability of a person claiming SSDI. This prediction is consistent with the empirical findings of Maestas et al. (2015) who show that, during the Great Recession, SSDI applicants tended to have less severe disabilities. As can be seen by equation (3), the take-up probability also increases with the cost of SSDI take-up. If the costs of take-up are high enough, only those with very severe disabilities will take advantage of the program. This has also been supported by papers using different measures of increased costs (Deshpande and Li, 2019; Foote et al. 2019).

For our purposes, we are most interested in how the responses to increases in the unemployment rate vary with the costs of take-up, namely:

\[
\frac{\partial^2 P(S > S^*)}{\partial U \partial C} = \frac{-1}{b(1-U)^2} \tag{4}
\]

which is negative. Taken together, equations (2) and (4) imply that while an increase in the unemployment rate leads to an increase in the likelihood of a person applying for SSDI the magnitude of this increase is smaller for people who face stronger work norms.

Figure 1 provides a graphical illustration of these general relationships. The dashed lines depict the benefits from SSDI participation. Both are increasing in disability severity, but the line associated with the higher unemployment rates (gray) always lies above the line associated with lower unemployment rates (black). More interestingly, the high unemployment line has a smaller slope, conveying the idea that with higher unemployment
rates, the additional benefits from SSDI resulting from a more severe disability are lower.11 The horizontal lines convey the different costs of SSDI participation. The black line depicts costs for a person facing low costs to SSDI take-up while the gray line depicts costs for a person with higher costs.

As can be seen from the figure, a person with strong work norms – and therefore high participation costs – facing low unemployment rates will take-up SSDI if his or her disability severity is above S_4^*. If the unemployment rate increases, this person’s threshold disability will drop to S_3^*. The corresponding values for someone with low costs are S_2^* and S_1^*. From the figure, it can be seen that, conditional on the unemployment rate, disability thresholds are always lower for the people with low costs than for those with high costs. It can also be seen that regardless of whether costs of SSDI are low or high, an increase in the unemployment rate will decrease S^* and therefore increase the take-up rate. Most importantly, however, the figure shows that the impact of an increase in the unemployment rate on the threshold values is larger for people with lower costs of take-up. Since we have assumed a uniform distribution for S, an increase in the threshold disability translates to a proportional increase in the probability of someone applying for SSDI. To conclude, our theoretical model provides an illustration of why the SSDI participation decisions of people with weak work norms may be more sensitive to increases in unemployment rates than people with strong norms.

4 Data

4.1 Integrated World Values Survey-European Values Survey (IVS) Data

To measure work norms, we use data from the World Values Survey (WVS) and the European Values Survey (EVS)—two large-scale, cross-national and longitudinal survey

11 To take an extreme example, for someone who is so severely disabled that wages are zero, an increase in the unemployment rate will not affect the benefits of SSDI. On the other hand, for someone who has such a marginal disability that wages are really high, an increase in the unemployment rate will have a very large impact on the benefits of SSDI since a high enough unemployment rate means the person does not have access to those high wages.
research programs. While the two surveys are processed by different organizations, their questions overlap. For our analysis, we use the Integrated Values Surveys (IVS) 1981-2014 data file which includes four waves of the EVS conducted between 1981 and 2008 and six waves of the WVS conducted between 1981 and 2014 (Inglehart et al. 2014).

In Section 3, we showed that the degree to which a person’s likelihood of applying for SSDI increases when the unemployment rate rises depends on the psychological costs of receiving SSDI faced by that person, which varies according to the person’s work norms. Starting with IVS individual-level data from several different countries over several years, we construct our measure of weak work norms by calculating, for each country over all available years, the share of respondents who “strongly disagree” with the statement: “Work is a duty towards society.” This is an ideal measure of work norms for our purposes because it is likely to capture both the direct cost and the social cost of giving up work. People who see work as a duty are likely to have a stronger preference for being in the labor force (or at least a weaker preference for being out of it) than people who do not see work as a duty and people from communities where many people view work as a duty are likely to experience high levels of disapproval from others if they apply for SSDI. To check for robustness of our main results and to learn more about the specific norms driving SSDI take-up, we also construct other measures of norms from the IVS.

4.2 American Community Survey Data

For our main analysis, we use data from the 2001 to 2016 samples of the American Community Survey (ACS), as reported by the Integrated Public Use Microdata Series (IPUMS, Ruggles et al. 2017). Our baseline ACS sample consists of immigrants between the ages of 25 and 61 who have been in the US for at least five years, and who do not reside in

12 For the questions asking whether people agree with certain statements, survey respondents answered with a 1 through 5, 1 corresponding to strongly agree and 5 corresponding to strongly disagree. The work duty question was only asked between 1999 and 2009. The values of our aggregate measure are shown in Appendix Table A2.
group quarters. Only naturalized citizens and noncitizens are included in the sample; Puerto Ricans and people from other US territories as well as individuals born abroad of American parents are dropped from the sample. To clearly link people to their country of origin communities, we drop individuals without a clear country of birth listed in the ACS (for example, they may be listed as “Central Africa, ns”). We also drop widows and widowers from the sample because our measure of SSDI receipt is less informative for this population. Finally, in order to use our preferred measure of work norms from the IVS, we only keep individuals from countries in which IVS respondents were asked opinions about whether people have a duty to work. Our final ACS sample consists of 1,899,295 observations.

The ACS does not directly ask about SSDI income. Instead, the survey asks about Social Security income more broadly. There are four different sources of Social Security income: SSDI benefits, public pensions, survivor benefits, and Railroad Retirement insurance payments. Because our sample consists of working age individuals, the people in our sample will not be receiving retirement income and few will be receiving Railroad Retirement insurance payments. Because we drop widows and widowers, Social Security benefits will not be from survivor benefits. Another issue to consider is that, while most Social Security income recipients in our sample will be receiving SSDI for their own disabilities, in some cases, non-disabled spouses and children of the disabled workers also qualify for SSDI benefits. We are not able to determine in our ACS sample if people are receiving benefits for their own disabilities, but we know from aggregate data that over 80 percent of SSDI beneficiaries receive benefits for their own disabilities (Annual Statistical Supplement to the Social Security Bulletin 2017). Moreover, in supplementary analyses of Current Population Survey (CPS) data, we show that our results are robust to using a more accurate measure of SSDI take-up. We gather data on annual state unemployment rates from the Local Area Unemployment Statistics program within the Bureau of Labor Statistics (BLS), and merge
these data with our ACS sample by state and year. Finally, we merge our work norms variables, constructed from the IVS data, with our ACS data by country of origin.

Table 1 shows descriptive statistics of the variables used in the analysis. On average, 1.35 percent of the immigrants in our sample receive SSDI. The average unemployment rate in our sample is 6.74 percent. The average immigrant in our sample is almost 42 years old. Fifty one percent are males, fifty percent are Hispanic and eighteen percent are white. Sixty-five percent have children, and sixty-seven percent are married (with the spouse present). Twenty-five percent have a high school degree, eighteen percent have some college, and twenty-seven percent have a college or higher educational qualification. Two percent have a cognitive difficulty, two percent a vision or hearing difficulty, and two percent have difficulty with an independent living. Three percent have an ambulatory difficulty, and one percent a self-care difficulty.

5 Evidence from the American Community Survey

5.1 Empirical Strategy

The main empirical specification we use in the analysis is

$$DI_{lost} = \beta_1 UR_{st-1} \times \overline{WKNM}_o + \beta_2 X_{lost} + \gamma_o + \delta_{st} + \epsilon_{lost}$$

(5)

where DI_{lost} takes on the value one if person i from country of origin o, living in state s in year t receives any disability insurance income and the value zero otherwise. Our right-hand side variable of interest is the interaction between the state unemployment rate, UR, in the year prior to the survey and \overline{WKNM}, the fraction of people in the person’s country of origin who strongly disagree with the statement, “work is a duty towards society”. Hence, a higher

13 The (non-seasonally adjusted) data were downloaded from the BLS webpage: https://www.bls.gov/lau/data.htm.

14 We use the unemployment rate in the year prior to the survey because it can take several months to even years for ultimately successful SSDI applications to be awarded. In Appendix Table A1, we show the sensitivity of our results to different lag structures.
value for WKNM indicates that people from origin country o tend to have weaker work norms. Empirically, the β_1 parameter is identified from variation across countries of origin (73 origin countries, shown in Appendix Table A2) and state-year unemployment rates. Assuming that weaker work norms reflect lower costs of SSDI take-up, a positive estimate of β_1 is consistent with the predictions of the theoretical model presented in Section 3.

We control for a series of individual characteristics including gender, race, marital status, whether there are children in the household, educational attainment, several broad measures of disability (such as whether the person has difficulty hearing or seeing or has an impairment making it difficult to perform self-care activities like bathing or dressing), and a full set of age as well as years in the US dummy variables. The state-year fixed effects (δ_{st}) control for all factors affecting all immigrants living in the same state at the same time equally. The country of origin fixed effects (γ_o) will absorb any unobserved tendencies for immigrants from particular backgrounds to take up SSDI. We cluster standard errors within state and country of origin cells, but appendix Table A4 shows that our results are robust to clustering in different ways.

5.2 Baseline Results

To establish the pattern between SSDI receipt and work norms in the data, we start by graphically exploring the relationship between unemployment rates and SSDI take-up, after accounting for state fixed effects, separately for immigrants from strong and weak work norm origin countries. As seen in the scatter plot shown in Figure 2, there is a noticeable difference in the relationship between the unemployment rate and SSDI take-up between immigrants from countries in the top quartile of responses to the “work duty” question and those in the bottom quartile. People from countries with weak work norms, depicted with triangles in the figure, become increasingly likely to receive SSDI payments as the unemployment rate
increases. For immigrants from high work norm countries, there is no positive relationship between the unemployment rate and SSDI take-up; in fact, the correlation is negative. To the extent that the “work duty” question reflects psychological costs borne by immigrants as a result of leaving the labor force to receive SSDI, the growing distance in take-up rates between the two groups as the unemployment rate increases is consistent with the theoretical framework in Section 3.

Turning now to our regression analysis, we examine the relationship between state unemployment rates and SSDI take-up, while taking into account individual and group level characteristics that may be correlated with home country norms and the unemployment rate. In column 1 of Table 2, we start by showing that, just as predicted by our model and consistent with the prior literature on the general US population (Maestas et al. 2018), immigrants are more likely to receive SSDI benefits when they reside in states with higher unemployment rates a year prior. In column 2, we test the main prediction of our theoretical model, equation (4). The estimate of the coefficient on the interaction between the unemployment rate and our measure of work norms is positive, just as predicted by the theoretical model, and statistically significant. In column 3, we replace the un-interacted lagged unemployment variable with state-year fixed effects and results remain robust. In column 4, we replace our measure of work norms with country of origin fixed effects, and thereby estimate the empirical model described by equation (5).

The estimate of 1.30 suggests that the same one percentage point increase in the unemployment results in a 0.13 percentage point larger increase in the probability of take up in France (the country with the weakest work norms, see Appendix Table A2) than in Egypt (the country with the strongest work norms). While this difference may appear small, it represents about 10 percent of the average SSDI take-up in our sample. Most importantly for the purposes of our study, the baseline result suggests that indeed work norms matter in the
decisions of conditional applicants, the very population that policymakers may care most about.

We use perceptions of duty to work as our preferred measure of work norms because we believe it nicely measures people’s perceptions about the innate value of work as opposed to how much fulfillment they get from their specific jobs or enjoyment of leisure time. To measure work norms, Corneo (2013) uses reactions to the statement “It is humiliating to receive money without having to work for it,” but we argue that this question measures high social costs from applying for government assistance as opposed to a high innate preference for working. Nevertheless, we show that our results are robust to using a variety of other related IVS questions in Table 3.15

For convenience, we report our baseline specification results in column 1 of Table 3. In column 2, we use as our measure of weak norms the fraction of people who strongly disagree that people who do not work turn lazy; in column 3, we use the fraction who strongly disagree that to develop talents one needs to have a job; in column 4, we use the fraction who strongly disagree that it is humiliating to receive money without having to work for it (the measure in Corneo 2013); and in column 5 we use the fraction of people who strongly disagree that work should come first even if it means less spare time. In all cases, the estimated coefficient on the interaction of the measure of work norms with the unemployment rate suggests a significant positive effect on the probability of a person receiving SSDI. However, the magnitude of the effects in these columns is smaller than when “work duty” is used as the measure of work norms. This may reflect the fact that the work duty question measures a person’s views on people’s responsibility to work, regardless of the particular job being done, regardless of the utility from leisure, and regardless of the availability of income from sources not requiring work.

15 See Appendix Table A3 for further details on the different questions. Not all questions are asked in all countries in all years, but by pooling data from all years, we obtain data for as many countries as possible.
In column 6 of Table 3, we use the measure of work norms perhaps most often used in the literature (Stam et al. 2016; Roex and Rözer 2018; Stavrova et al. 2011), namely the first principal component when principal components analysis is applied to the five individual work-related questions described above. The interaction of this with unemployment rate has a significant positive effect on the probability of SSDI take-up.

While we are predominantly interested in the role of work norms in SSDI take-up decisions, it may actually be differences in attitudes regarding cheating the government that are driving our results. We consider this possibility in column 7 of Table 3.16 Interestingly, immigrants from countries where people respond that “claiming government benefits to which the individual is not entitled” is “always justifiable” are not especially likely to go on disability in response to bad economic conditions; the estimate is small, statistically insignificant and even has a negative sign. We view this as evidence that it is work norms, rather than an aversion to cheating the government, that is responsible for the pattern of results that we have uncovered.

\textbf{5.3 Further Support for our Interpretation of Results}

Returning to our baseline specification, we now consider alternative potential explanations for our baseline results, starting with the concern that immigrants from weak work norm countries may simply be more likely to become unemployed during economic downturns. To address this concern, we construct unemployment rates within more narrowly defined cells. We do this by constructing the unemployment rates ourselves from the ACS data because the BLS does not produce unemployment rates within the narrowly defined cells. In column 1 of Table 4, we show that our baseline estimates are practically unchanged regardless of whether we use the BLS state unemployment rates or our own ACS-constructed state unemployment

16 For the questions asking whether it is justifiable to engage in certain behaviors (like claiming government benefits to which the individual is not entitled), survey respondents answered with a 1 through 10, 1 corresponding with never justifiable and 10 corresponding to always justifiable.
rates. Next, since many of the immigrants in our sample have very low levels of education, and low-skill labor markets tend to be more sensitive to business cycles (Hoynes, Miller and Shaller 2012), we construct unemployment rates within education-state-year cells. As seen in column 2 of Table 4, the estimate of the coefficient on our interaction is positive and significant in this specification as well.

Next, we look directly at occupation and industry specific unemployment rates. In column 3 of Table 4 we construct unemployment rates within 1-digit occupation–state–year cells, and in column 4 we construct unemployment rates within 1-digit industry–state–year cells. Again, in both cases the estimate of the interaction coefficient between the unemployment rate and our work norms measure is positive and statistically significant. These specifications account for the fact that different groups of immigrants are concentrated in jobs that are vulnerable to the business cycle to different degrees. However, they are not our preferred specifications because so many of the people on disability, even those new to the system, have not worked in many years (Mueller et al. 2016) and so do not list an occupation or industry in the ACS.\footnote{Survey respondents who have not worked within the past five years do not list an occupation or industry in the ACS. We assigned all individuals without a listed occupation a value, and created a dummy variable equal to one when this was done. We then added to our model an interaction term between the dummy variable and the unemployment to control for whether the person’s state-year-occupation unemployment rate was imputed in this manner.}

We then return to our original BLS measure of state unemployment, but consider the sub-sample of immigrants who are in the labor force and explore whether those in weak work norm groups are especially likely to become unemployed during recessions. If it is true that immigrants with weak work norms are more likely to lose their jobs during recessions, then we might expect individuals with no underlying disability (i.e., who cannot qualify for SSDI) to simply become unemployed. On the other hand, if they are not differentially likely to experience job loss during recessions, we should observe no statistically significant impact on the likelihood of become unemployed for this group. As can be seen in column 5 of Table 4,
the estimated coefficient on the interaction of work norms and the state unemployment rate is statistically insignificant and actually negative in sign.

Finally, we examine impacts on wages of workers. If immigrants from weak work norm groups are more adversely affected by recessions, then we should expect them to experience larger wage losses during these periods. On the other hand, if our baseline findings are driven by values regarding work, then if anything, we should expect those with a stronger work ethic to accept lower wage offers before returning to work. This would imply that immigrants from countries with weaker work norms have higher average wages during recessions. Using a sample of individuals who earned positive wages in the previous week and who worked more than 50 weeks in the previous year, column 6 of Table 4 shows no statistically impact on hourly wages. Not only is the estimate statistically insignificant and very small in magnitude, but the point estimate is positive, a result consistent with work norms playing a leading role.

Beyond our particular concern regarding differential labor market sensitivities to the business cycle, there may be other characteristics that vary systematically between immigrants from strong vs. weak work norm countries that influence SSDI take-up rates during economic downturns. In fact, any characteristic which would make people in some immigrant groups more likely than others to qualify for SSDI (for example, having a greater likelihood of satisfying the SSDI work history requirements or having a qualifying disability) might result in differential likelihoods of taking up SSDI in response to an economic downturn. All workers may want to apply for benefits after a job loss, but only those who qualify will be awarded benefits.

To address this possibility, we add several interactions between the lagged unemployment rate and average characteristics of the origin group to equation (5). First, we include the interaction between the unemployment rate and average years of schooling
because individuals with very low levels of education may be more likely to become disabled (and more likely to receive SSDI, see Autor and Duggan 2006), and the foreign born with less than a high school degree are more likely to be undocumented (Borjas 2017). By controlling for the education-unemployment rate interaction, we are not allowing the work norms interaction coefficient to simply pick up these relationships. Similarly, we include the average age-unemployment rate interaction because younger individuals are less likely to become disabled (see Duggan and Imberman 2009) and more likely to be undocumented (Borjas 2017).\(^{18}\) We also include the average years in the US-unemployment rate interaction because immigrants with fewer years in the US are less likely to have worked in the US for enough years to qualify for SSDI. Finally, we include the interaction of GDP per capita in a person’s country of origin (taken from World Bank and OECD National Accounts data files) with the unemployment rate to control for the possibility that work norms simply reflect a country’s level of economic development which may be correlated with immigrants’ likelihoods of qualifying for SSDI.

As seen in columns 1-4 of Table 5, the estimated coefficient on the interaction between unemployment rate and work norm is little changed in magnitude and remains statistically significant when the additional interaction terms are included in the model. This suggests that country of origin differences in schooling, age, years in the United States, and GDP per capita are not driving the different business cycle sensitivities by country of origin.

While these results are certainly comforting, there are other factors driving variation across origin group in the likelihood of satisfying SSDI requirements, many of which are unobserved in our data or not measurable in general. As a more comprehensive measure of eligibility for SSDI, we use past SSDI take-up among immigrants in the US from the same country of origin. Specifically, we add to our main specification an interaction term between

\(^{18}\) People with fewer years of schooling and those who are younger are more likely to lose their jobs during economic downturns (Hoynes et al. 2012), and so adding these control variables also helps to address concerns about labor market sensitivities to the business cycle.
the unemployment rate and average SSDI take-up rates from the 2000 Census (which occurred before our sample period) for the person’s country of origin group. We are thus examining whether, among immigrants from groups with the same past SSDI take-up rate, immigrants from countries placing less emphasis on work are especially likely to go on disability in response to an increase in the unemployment rate. As can be seen in column 5 of Table 5, this interaction term does not have a statistically significant impact on SSDI take-up. Our estimated coefficient of interest remains positive and statistically significant in this model.

In yet another approach to determining whether work norms drive our baseline estimates, we examine whether immigrants that are more tightly connected to their ethnic communities are more likely to take up SSDI during recessions when they belong to high work norm ethnic groups. After all, immigrants who happen to hold values similar to those in their country of origin group are more likely to remain socially connected to them, and immigrants who more socially connected are likely to experience social pressure to act according to group values. To measure social attachment to country of origin group, we use whether the immigrant is fluent in English. Comparing columns 1 and 2 of Table 6, we can see that our results are driven by immigrants who are not fluent in English (as defined by whether they self-report speaking English either “not at all”, “speak English but not well” or “speak well”). While the estimate of interest is positive and significant for both groups, it smaller in magnitude for those who are fluent in English (as defined by speaking English “very well” or “only English”) than for those who are not fluent.

For even further evidence that our estimates are measuring the role of work norms, we separate our sample into groups that may be differentially sensitive to work norms. As described in Akerlof and Kranton (2000), a person’s sense of self can change the payoffs

19 Using a similar approach, Stutzer and Lalive (2004) show that social norms are more important in smaller communities where people mostly know their neighbors. They also find weaker impacts of norms among those whose mother tongue is not the local language.
from different actions. For example, following the societal prescriptions for one’s gender can be self-affirming while violating them can generate anxiety. Thus, if society makes stronger prescriptions for work in the labor market for men while emphasizing caregiving within the family for women, then we might expect men to be more sensitive to work norms than are women. Consistent with this idea, males’ self-reported levels of well-being are more sensitive to work norms than are females’ (Roex and Rozer 2018; Clark 2003; Hetchko et al. 2013). To test this hypothesis using our data, we separate the sample by gender. As can be seen by comparing the point estimates in columns 3 and 4 in Table 5, males do appear more sensitive to work norms than females, although the estimates are not statistically different from each other.

Using a similar identity-based argument, we may expect work norms to be more important for individuals in prime working age than for people approaching retirement age. After all, Hetchko et al.’s (2013) finding that the unemployed experience larger life satisfaction gains upon reaching retirement age than the employed suggests that the social prescriptions to work decrease with age. The results in columns 5 and 6 of Table 6, which separate the sample by whether individuals are below or above the median age in our sample (age 41), may at first glance suggest the opposite result since the estimated coefficient is in fact larger in magnitude for the younger population. However, it is important to keep in mind that SSDI take-up is significantly higher for older individuals (2.30% percent take-up for those older than 41, and 0.51% for those under 41) than younger individuals. When comparing estimates relative to mean take-up rates, norms do indeed seem to play a substantially more important role for younger individuals.

6 Additional Evidence from the Current Population Survey

We supplement our analysis with data from the Annual Social and Economic Supplement
(ASEC) to the CPS (March CPS) from the years 2001 to 2017, also provided by the Integrated Public Use Microdata Series (IPUMS, Flood et al. 2017). The CPS is a monthly survey covering approximately 60,000 households. The advantages of the CPS data over our ACS data are that the CPS dataset provides a more direct measure of SSDI income, it has better health measures, asks a series of questions allowing us to make predictions about whether an immigrant is undocumented, and the CPS data provide information on parental country of birth which can be used to identify second generation immigrants. The disadvantage of the CPS data compared to the ACS data is the smaller number of observations.

We make the same sample restrictions on the CPS data that we used for the ACS sample, and we only include households that have been in the CPS for four months or less to ensure that the same household does not appear in the sample twice. The dependent variable is now defined as whether a person received Social Security income for a disability in the previous year. The share of people from a person’s home country strongly disagreeing that “work is a duty toward society”, constructed from the IVS surveys, is merged in at the country of birth level, and the lagged unemployment rates from the BLS are merged in at the state-year level.

Estimating the primary specification using the CPS sample produces a positive coefficient of interest that is larger than the corresponding estimate from the ACS (see column 1 of Table 7), perhaps because of the more accurate measure of SSDI take-up in this analysis. The estimated coefficient of interest falls in magnitude when adding controls for a person’s self-reported health status, but not substantially, providing some comfort that our results are not driven by immigrants from weak norm countries becoming increasingly likely to suffer health shocks in bad economic times.

The CPS data also allow us to more directly address a concern discussed in Section
5.3, namely, that all people want to leave the labor force to receive SSDI benefits during economic downturns, but only those who are eligible for benefits actually apply and receive them. In the case of immigrants, legal status in the US is an important eligibility criterion, and one which may be correlated with home country work norms.

Using CPS data, we are able to identify likely documented immigrants following the procedure described in Borjas (2017) and used again in Borjas and Slutsky (2018). We then separate our sample by probable legal status. In the undocumented sample (column 3 of Table 7), it is not surprising that the work duty-unemployment rate term does not affect the likelihood of receiving SSDI, after all, they do not qualify for SSDI. We view this result simply as evidence that our algorithm for identifying undocumented immigrants is working well. More importantly, we find a significant positive coefficient when the sample is restricted to probable documented immigrants (column 4 of Table 7), a result suggesting that differences in the number of undocumented immigrants are not driving our main findings.

While our study focuses on immigrants, we see no obvious reason to believe that the mechanisms driving the relationship between unemployment rates and SSDI participation should be substantially different for immigrants and natives. If anything, because many of the foreign born in our sample are not eligible for the SSDI program, it is more difficult for us to uncover any impacts in this population. To examine this issue, we turn to a sample of the native-born children of immigrants. Second generation immigrants are an especially interesting demographic group because, like third and higher generation immigrants, they were born in the US and so most likely qualify for SSDI. However, like first-generation immigrants, they may still have strong connections to their ethnic communities (Borjas 1992; Guiso, Sapienza, and Vingales 2006; Bisin and Verdier 2011). In columns 5 and 6 of Table 7, we examine whether the work norms in a person’s father’s or mother’s country, respectively, affects the likelihood of receiving SSDI when unemployment rates increase. Only work
norms in the father’s – not the mother’s – country are found to have a significant effect. This is consistent with our earlier finding that work norms have a stronger effect for men than for women and suggest that fathers pass their attitudes to work on to their children. The estimated coefficient of interest is substantially larger in magnitude for the children of male immigrants than it is for first-generation immigrants. Part of this is likely due to the fact that native born children of immigrants are more likely to qualify for SSDI. However, even relative to the average value of the dependent variable, the coefficient in column 6 is larger than the coefficient in column 2.

7 Conclusion
The Social Security Disability Insurance (SSDI) program faced severe challenges even before the COVID-19 pandemic. In 2018, SSDI paid net benefits of $143.7 billion from a trust fund which, according to projections made before COVID-19, would be exhausted by 2052 (Trustees Report, 2019). Regardless of pandemic responses, policymakers will be facing difficult decisions regarding whether to cut benefits or replenish funding. With overly stringent eligibility criteria, people in need may not receive important benefits. On the other hand, overly lenient criteria may not only be very costly to taxpayers but could also create perverse work incentives. To address the latter concern while still making it possible for the most disabled applicants to qualify if they apply, many social insurance programs rely on people’s own notions of ethical behavior regarding take-up to keep take-up rates low (Lindbeck et al. 1999; 2003). This paper is the first to examine the impact of work norms on take-up of SSDI, a program designed for those who are permanently disabled and unable to work. We focus specifically on increases in take-up during difficult economic times, when there is no particular reason to expect higher rates of disability, in order to identify the effect of work norms on conditional applicants.
Using home country attitudes regarding whether work is a duty towards society to measure work norms, we show that immigrants from countries with weaker work norms are more sensitive to economic conditions than immigrants from countries with stronger work norms. Interestingly, taboos against cheating the government do not seem to influence the relationship between economic conditions and SSDI take-up. Further analyses suggest that our baseline findings are indeed driven by work norms as opposed to differences in experienced severity of recessions or eligibility rates.

More generally, our analysis provides further support for the notion that the SSDI program is not being used solely to provide insurance against the possibility of becoming permanently disabled. It seems to also work as insurance against the possibility of job loss for certain groups of people. This is problematic for the recession-induced SSDI participants themselves given that once they start receiving disability benefits, they rarely return to the labor force in any meaningful way, even when the economy improves. In addition, if as suggested by Lindbeck et al. 1999, 2003) the strength of work norms diminishes as more people are out of the labor force, then take-up is likely to increase even more during future economic downturns, putting further financial strain on the program.

While a potential policy implication of our analysis is to somehow strengthen work norms, it is likely to be difficult to directly change norms in practice. However, given the evidence in this paper that work norms matter for SSDI decisions, policymakers might want to consider how both SSDI and other labor market policies will indirectly affect future SSDI take-up rates through their impacts on work norms. For example, in response to the current pandemic-induced economic downturn, policymakers may favor policies that keep people in the workforce, even part time. Moreover, if indeed work norms weaken in response to higher SSDI take-up rates, our finding that work norms matter implies that any policy directly changing the SSDI-related behaviors of even a small number of people might have
substantial multiplier effects. Given that the SSDI Trust Fund faces exhaustion in the coming years (Trustees Report, 2019), policy makers will need to consider these issues if the program is to survive.
References

Appendix

Instead of assuming that S is uniformly distributed, assume that it is log-normally distributed, so that:

$$\ln S \sim N(0,1)$$

As a result, S will be right skewed, which likely matches the true distribution of disability severity better than does a uniform distribution. Given the other assumptions made in Section 3, the probability of someone choosing SSDI is now:

$$P(S > S^*) = 1 - \Phi(\ln\frac{a(1-U)-D+C}{b(1-U)})$$

where Φ is the standard normal CDF. The derivative of this probability with respect to U is:

$$\frac{\partial P(S > S^*)}{\partial U} = \phi(\ln\frac{a(1-U)-D+C}{b(1-U)}) \frac{1}{1-U} \frac{D-C}{a(1-U)-D+C} > 0$$

where ϕ is the standard normal PDF. Using the fact that $\phi'(z) = -z\phi(z)$, the second derivative of the take-up probability with respect to U and C is:

$$\frac{\partial^2 P(S > S^*)}{\partial U \partial C} = \phi(\ln\frac{a(1-U)-D+C}{b(1-U)}) \frac{1}{(a(1-U)-D+C)^2} (-D-C) \ln\frac{a(1-U)-D+C}{b(1-U)} - a)$$

The sign of this second derivative will be determined by the sign of the final term in parentheses. Because we have assumed that $D > C$, $-(D-C)$ must be negative. The term inside the log function is actually the expression for the application threshold, S^*, as determined by equation (1). If S^* is greater than the mean of S, which is $e^{0.5}$ given our distributional assumption on S, then $\ln\frac{a(1-U)-D+C}{b(1-U)}$ will certainly be positive. Because a is positive by assumption, the final term in parentheses will be negative. Given that SSDI is received by a relatively small share of the population, it is reasonable to believe that for most people S^* will be greater than the mean disability level in the population.
Figure 1. Costs and Benefits of SSDI Take-Up by Disability Severity
Figure 2. Lagged Unemployment Rates and SSDI Take-Up by Strength of Work Norms

Notes: Immigrants in strong work norm groups are those from countries with the share disagreeing that work is a duty to society in the bottom quartile of the distribution. Immigrants in weak work norms groups are those from countries in top quartile. To create the figure, we first regress both SSDI and unemployment rates on a full set of state of residence fixed effects. We then group the residual unemployment rates from this regression into 20 equal sized bins and plot the residual unemployment rates against the corresponding residual SSDI take-up rates in each bin.
Table 1. Summary Statistics

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Standard deviation</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disability Insurance Receipt (SSDI)</td>
<td>0.0135</td>
<td>0.1153</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Share disagree work duty</td>
<td>0.0175</td>
<td>0.0111</td>
<td>0.0010</td>
<td>0.1000</td>
</tr>
<tr>
<td>State-year unemployment rate</td>
<td>0.0674</td>
<td>0.0222</td>
<td>0.0230</td>
<td>0.1370</td>
</tr>
<tr>
<td>Age</td>
<td>41.7999</td>
<td>9.7985</td>
<td>25</td>
<td>61</td>
</tr>
<tr>
<td>Male</td>
<td>0.5094</td>
<td>0.4999</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Hispanic</td>
<td>0.5009</td>
<td>0.5000</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>White non-Hispanic</td>
<td>0.1827</td>
<td>0.3864</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Black non-Hispanic</td>
<td>0.0226</td>
<td>0.1487</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Asian non-Hispanic</td>
<td>0.2925</td>
<td>0.4549</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Mixed race</td>
<td>0.0120</td>
<td>0.1090</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Children</td>
<td>0.6495</td>
<td>0.4771</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Married (spouse-present)</td>
<td>0.6738</td>
<td>0.4688</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>High school dropout</td>
<td>0.2958</td>
<td>0.564</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>High school graduate</td>
<td>0.2534</td>
<td>0.4349</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Some college</td>
<td>0.1800</td>
<td>0.3842</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>College degree or more</td>
<td>0.2708</td>
<td>0.4444</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Cognitive difficulty</td>
<td>0.0176</td>
<td>0.1316</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Ambulatory difficulty</td>
<td>0.1308</td>
<td>0.1729</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Independent living difficulty</td>
<td>0.0190</td>
<td>0.1365</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Self-care difficulty</td>
<td>0.0095</td>
<td>0.0968</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Hearing/vision difficulty</td>
<td>0.0200</td>
<td>0.1399</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Years in the U.S.</td>
<td>20.0682</td>
<td>10.8717</td>
<td>5</td>
<td>62</td>
</tr>
<tr>
<td>Observations</td>
<td>1,899,295</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes. Our sample consists of non-widowed, non-institutionalized immigrants, aged 25-61, who have lived in the United States for at least five years. Only naturalized citizens and non-citizens are included, meaning that Puerto Ricans and people from other U.S. territories as well as individuals born abroad of American parents are dropped from the sample. We also exclude individuals whose countries of origin are not clearly specified in the data and those whose origin countries do not have IVS responses to the work duty question. SSDI is a dummy variable that equals one if the person receives Social Security income. The share disagree work duty variable is constructed from the IVS data by country of origin. It is the share of respondents who strongly disagree with the following statement “Work is a duty towards society”. The state-year unemployment variable is obtained from BLS’s Local Area Unemployment Statistics program and it is lagged by one year. Estimates are weighted using the appropriate person-level weights provided by the ACS.
<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SSDI</td>
<td>SSDI</td>
<td>SSDI</td>
<td>SSDI</td>
</tr>
<tr>
<td>Share disagree work duty</td>
<td>-0.1346**</td>
<td>-0.1199**</td>
<td>(0.037)</td>
<td>(0.033)</td>
</tr>
<tr>
<td>State-year unemployment rate</td>
<td>0.0086+</td>
<td>-0.0192+</td>
<td>(0.005)</td>
<td>(0.010)</td>
</tr>
<tr>
<td></td>
<td>1.5210**</td>
<td>1.3921**</td>
<td>(0.484)</td>
<td>(0.462)</td>
</tr>
<tr>
<td></td>
<td>0.0303</td>
<td>0.3015</td>
<td>(2.131)</td>
<td>(2.123)</td>
</tr>
<tr>
<td>Hispanic</td>
<td>0.0002</td>
<td>-0.0042**</td>
<td>(0.001)</td>
<td>-0.00040**</td>
</tr>
<tr>
<td>White</td>
<td>-0.0006</td>
<td>0.0008</td>
<td>(0.001)</td>
<td>0.0007</td>
</tr>
<tr>
<td>Black</td>
<td>0.0026</td>
<td>0.0000</td>
<td>(0.002)</td>
<td>0.0004</td>
</tr>
<tr>
<td>Asian</td>
<td>-0.0030*</td>
<td>-0.0027*</td>
<td>(0.001)</td>
<td>-0.0022*</td>
</tr>
<tr>
<td>Child</td>
<td>-0.0008**</td>
<td>-0.0008**</td>
<td>(0.000)</td>
<td>-0.0008**</td>
</tr>
<tr>
<td>Married (spouse present)</td>
<td>-0.0045**</td>
<td>-0.0044**</td>
<td>(0.000)</td>
<td>-0.0044**</td>
</tr>
<tr>
<td>High school degree</td>
<td>-0.0028**</td>
<td>-0.0027**</td>
<td>(0.000)</td>
<td>-0.0027**</td>
</tr>
<tr>
<td>Some college</td>
<td>-0.0058**</td>
<td>-0.0059**</td>
<td>(0.001)</td>
<td>-0.0058**</td>
</tr>
<tr>
<td>College degree or more</td>
<td>-0.0082**</td>
<td>-0.0081**</td>
<td>(0.001)</td>
<td>-0.0081**</td>
</tr>
<tr>
<td>Cognitive difficulty</td>
<td>0.0623**</td>
<td>0.0622**</td>
<td>(0.005)</td>
<td>0.0620**</td>
</tr>
<tr>
<td>Ambulatory difficulty</td>
<td>0.0835**</td>
<td>0.0836**</td>
<td>(0.003)</td>
<td>0.0836**</td>
</tr>
<tr>
<td>Independent living difficulty</td>
<td>0.0643**</td>
<td>0.0644**</td>
<td>(0.003)</td>
<td>0.0647**</td>
</tr>
<tr>
<td>Self-care difficulty</td>
<td>0.0558**</td>
<td>0.0558**</td>
<td>(0.006)</td>
<td>0.0556**</td>
</tr>
<tr>
<td>Hearing/vision difficulty</td>
<td>0.0131**</td>
<td>0.0131**</td>
<td>(0.002)</td>
<td>0.0130**</td>
</tr>
<tr>
<td>Age fixed effects</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Years in the U.S. fixed effects</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Country of origin fixed effects</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Year-state fixed effects</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Observations</td>
<td>1,899,295</td>
<td>1,899,295</td>
<td>1,899,295</td>
<td>1,899,295</td>
</tr>
<tr>
<td>Adjusted R-squared</td>
<td>0.077</td>
<td>0.077</td>
<td>0.077</td>
<td>0.077</td>
</tr>
<tr>
<td>Dependent variable</td>
<td>0.0135</td>
<td>0.0135</td>
<td>0.0135</td>
<td>0.0135</td>
</tr>
</tbody>
</table>

Notes. See Table 1 for information on sample restrictions. Coefficients are estimated using linear probability models. Standard errors are clustered by state and country of origin cells and are reported in parentheses. Estimates are weighted using the appropriate person-level weights provided by the ACS. Levels of significance: ** p<0.01, * p<0.05, + p<0.1.
Table 3. Robustness Checks (ACS 2001-2016)

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Share disagree work duty × State-year unemployment rate</td>
<td>SSDI</td>
<td>SSDI</td>
<td>SSDI</td>
<td>SSDI</td>
<td>SSDI</td>
<td>SSDI</td>
<td>SSDI</td>
</tr>
<tr>
<td></td>
<td>1.2977** (0.419)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Share disagree “turn lazy” × State-year unemployment rate</td>
<td></td>
<td>0.9628** (0.309)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Share disagree “talent develop” × State-year unemployment rate</td>
<td></td>
<td></td>
<td>0.5512* (0.259)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Share disagree “humiliating money” × State-year unemployment rate</td>
<td></td>
<td></td>
<td></td>
<td>0.4340** (0.167)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Share disagree “work come first” × State-year unemployment rate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.2790+ (0.155)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCA work norms × State-year unemployment rate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.0722** (0.024)</td>
<td></td>
</tr>
<tr>
<td>Share disagree “government benefits” × State-year unemployment rate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-0.0466 (0.110)</td>
</tr>
</tbody>
</table>

Observations | 1,899,295 | 1,899,295 | 1,899,295 | 1,899,295 | 1,899,295 | 1,899,295 | 1,899,295 |

Adjusted R-squared | 0.077 | 0.077 | 0.077 | 0.077 | 0.077 | 0.077 | 0.077 |

Notes. See Table 1 for information on sample restrictions and Table 2 (column 4) for information on the control variables and fixed effects included. Coefficients are estimated using linear probability models. Estimates are weighted using the appropriate person-level weights provided by the ACS. Standard errors are clustered by state and country of origin cells and are reported in parentheses. Levels of significance: ** p<0.01, * p<0.05, + p<0.1. In column 1, the interaction variable is the product of the share of home country IVS respondents who strongly disagree that work is a duty towards society (“work duty”) and the lagged unemployment rate (replicating column 4 of Table 2). In column 2, the interaction variable is the product of the share of home country IVS respondents who strongly disagree that people who do not work turn lazy (“turn lazy”) and the lagged unemployment rate. In column 3, the interaction variable is the product of the share of home country IVS respondents who strongly disagree that to develop talents you need to have a job (“talent develop”) and the lagged unemployment rate. In column 4, the interaction variable is the product of the share of home country IVS respondents who “strongly disagree” that is humiliating to receive money without having to work for it (“humiliating money”) and the lagged unemployment rate. In column 5, the interaction variable is the product of the share of home country IVS respondents who “strongly disagree” that work should come first even if it means less spare time (“work come first”) and the lagged unemployment rate. In column 6, the interaction variable is the product between the unemployment rate and the share of home country IVS respondents who say that it is always justifiable to claim government benefits to which you are not entitled (“government benefits”). To make samples equivalent across specifications, we have assigned an arbitrary value to observations with missing information on the WVS variable. We then created a corresponding dummy variable equal to one if the IVS value was assigned in this way. While the country of origin fixed effects will control for the direct impact of a having a missing value for any IVS variable, we have added to our models an interaction term between the dummy variable for missing data and the state-year unemployment rate.
Table 4. Differential Sensitivities to the Business Cycle (ACS 2001-2016)

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Share disagree work duty × ACS State-year unemployment rate</td>
<td>1.1693**</td>
<td>1.4182**</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(in four education cells)</td>
<td>(0.445)</td>
<td>(0.444)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Share disagree work duty × ACS State-year unemployment rate</td>
<td></td>
<td></td>
<td>0.6661*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(in ten one-digit occupation cells)</td>
<td></td>
<td></td>
<td>(0.271)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Share disagree work duty × ACS State-year unemployment rate</td>
<td></td>
<td></td>
<td></td>
<td>1.2205*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(in ten one-digit industry cells)</td>
<td></td>
<td></td>
<td></td>
<td>(0.587)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Share disagree work duty × State-year unemployment rate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-0.2148</td>
<td>6.5516</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(1.157)</td>
<td>(4.114)</td>
</tr>
<tr>
<td>Observations</td>
<td>1,899,295</td>
<td>1,899,295</td>
<td>1,899,295</td>
<td>1,899,295</td>
<td>1,502,050</td>
<td>942,423</td>
</tr>
<tr>
<td>Adjusted R-squared</td>
<td>0.077</td>
<td>0.079</td>
<td>0.091</td>
<td>0.084</td>
<td>0.017</td>
<td>0.400</td>
</tr>
</tbody>
</table>

Notes. See Table 1 for information on sample restrictions and Table 2 (column 4) for information on the control variables and fixed effects included. Coefficients are estimated using linear probability models. Estimates are weighted using the appropriate person-level weights provided by the ACS. Standard errors are clustered by state and country of origin cells and are reported in parentheses. Levels of significance: ** p<0.01, * p<0.05. Column 1 replicates column 4 of Table 2 but replaces the BLS state-year unemployment rate with the state-year unemployment rate constructed using the ACS data. Column 2 presents estimates where the unemployment rate is constructed using ACS data within state-year-education (4 categories) cells. Column 3 presents estimates where the unemployment rate is constructed using ACS data within state-year-one-digit occupation cells. Column 4 presents estimates where the unemployment rate is constructed using ACS data within state-year-one-digit industry cells. In column 5 the sample is restricted to individuals who participate in the labor market. In column 6 the sample is restricted to individuals who worked continuously in the previous year and who earned positive wages. We have also trimmed very low (less than $2 per hour) and very high wages (more than $60 per hour). Wages have been deflated using the consumer price index (CPI) to base year 2001.
Notes. See Table 1 for information on sample restrictions and Table 2 (column 4) for information on the control variables and fixed effects included. Coefficients are estimated using linear probability models. Estimates are weighted using the appropriate person-level weights provided by the ACS. Standard errors are clustered by state and country of origin cells and are reported in parentheses. Levels of significance: ** p<0.01, * p<0.05. Column 1 adds as an extra control the interaction between average years of schooling within country of origin cells and the state-year unemployment rate. Column 2 adds the interaction between average age within country of origin cells and the lagged unemployment within state-year cells. Column 3 adds the interaction between average years in the U.S. within country of origin cells and the state-year unemployment rate. Column 4 adds the interaction term between the GDP per capita/10,000 in the origin country in year 2000 and the lagged unemployment rate within state-year cells. Column 5 adds the interaction between the average SSDI receipt within country of origin cells in year 2000 constructed from the 5% U.S Census sample and the lagged unemployment rate within state-year cells. To make samples equivalent across specifications, in columns 4 and 5 we have assigned an arbitrary value to observations with missing information. We then created a corresponding dummy variable equal to one if the value was assigned in this way. While the country of origin fixed effects will control for the direct impact of a having a missing value for any country of origin specific variable, we have added to our models an interaction term between the dummy variable for missing data and the state-year unemployment rate.

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Share disagree work duty × State-year unemployment rate</td>
<td>1.2951**</td>
<td>1.3030**</td>
<td>1.3258**</td>
<td>1.1670*</td>
<td>1.2878**</td>
</tr>
<tr>
<td></td>
<td>(0.416)</td>
<td>(0.415)</td>
<td>(0.433)</td>
<td>(0.475)</td>
<td>(0.434)</td>
</tr>
<tr>
<td>Average years of schooling × State-year unemployment rate</td>
<td>0.0002</td>
<td>-0.0004</td>
<td>-0.0005</td>
<td>0.0046</td>
<td>0.007</td>
</tr>
<tr>
<td></td>
<td>(0.001)</td>
<td>(0.002)</td>
<td>(0.002)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average age × State-year unemployment rate</td>
<td></td>
<td></td>
<td></td>
<td>0.0046</td>
<td>0.2726</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.007)</td>
<td>(1.240)</td>
</tr>
<tr>
<td>Average years in the U.S. × State-year unemployment rate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.2726</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(1.240)</td>
</tr>
<tr>
<td>GDP per capita/10,000 in the origin country in year 2000 × State-year unemployment rate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average origin group SSDI in 2000 × State-year unemployment rate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.2726</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(1.240)</td>
</tr>
</tbody>
</table>

| Observations | 1,899,295 | 1,899,295 | 1,899,295 | 1,899,295 | 1,899,295 |
| Adjusted R-squared | 0.077 | 0.077 | 0.077 | 0.077 | 0.077 |
Table 6. Heterogeneity (ACS 2001-2016)

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fluent in English</td>
<td>SSDI</td>
<td>SSDI</td>
<td>SSDI</td>
<td>SSDI</td>
<td>SSDI</td>
<td>SSDI</td>
</tr>
<tr>
<td></td>
<td>0.9622*</td>
<td>1.6533*</td>
<td>1.7056**</td>
<td>0.8820+</td>
<td>0.8457*</td>
<td>1.4852*</td>
</tr>
<tr>
<td></td>
<td>(0.479)</td>
<td>(0.824)</td>
<td>(0.620)</td>
<td>(0.532)</td>
<td>(0.368)</td>
<td>(0.685)</td>
</tr>
<tr>
<td>Not fluent in English</td>
<td>SSDI</td>
<td>SSDI</td>
<td>SSDI</td>
<td>SSDI</td>
<td>SSDI</td>
<td>SSDI</td>
</tr>
<tr>
<td></td>
<td>0.8820+</td>
<td>0.8457*</td>
<td>0.8457*</td>
<td>0.8457*</td>
<td>0.8457*</td>
<td>0.8457*</td>
</tr>
<tr>
<td></td>
<td>(0.532)</td>
<td>(0.368)</td>
<td>(0.368)</td>
<td>(0.368)</td>
<td>(0.368)</td>
<td>(0.368)</td>
</tr>
<tr>
<td>Men</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Women</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><=Median age</td>
<td>0.089</td>
<td>0.074</td>
<td>0.092</td>
<td>0.066</td>
<td>0.029</td>
<td>0.093</td>
</tr>
<tr>
<td>> Median age</td>
<td>0.0122</td>
<td>0.0146</td>
<td>0.0131</td>
<td>0.0139</td>
<td>0.00549</td>
<td>0.0230</td>
</tr>
</tbody>
</table>
| Notes. See Table 1 for information on sample restrictions and Table 2 (column 4) for information on the control variables and fixed effects included. Column 1 is restricted to individuals who speak only English or speak English very well. Column 2 is restricted to individuals who speak English well, speak English but not well, or do not speak English. Column 3 is restricted to men and column 4 to women. Column 5 is restricted to individuals who are younger than the median age in our sample (41) whereas column 6 is restricted to those who are older than the median. Coefficients are estimated using linear probability models. Estimates are weighted using the appropriate person-level weights provided by the ACS. Standard errors are clustered by state and country of origin cells and are reported in parentheses. Levels of significance: ** p<0.01, * p<0.05, + p<0.1. The difference of the coefficients between columns 1 and 2 is not statistically significant [chi2(1)=0.48, Prob>chi2=0.4867]. The difference of the coefficients between columns 3 and 4 is not statistically significant [chi2(1)=1.06, Prob>chi2=0.3042]. The difference of the coefficients between columns 5 and 6 is not statistically significant [chi2(1)=0.80, Prob>chi2=0.3711].
<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>First generation SSDI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Share disagree work duty × State-year unemployment rate</td>
<td>3.394** (1.570)</td>
<td>2.769* (1.552)</td>
<td>1.039 (0.915)</td>
<td>3.372* (2.011)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>First generation SSDI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Share disagree work duty in father’s home county × State-year unemployment rate</td>
<td></td>
<td></td>
<td></td>
<td>10.886** (5.581)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Share disagree work duty in mother’s home county × State-year unemployment rate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.581 (2.963)</td>
<td></td>
</tr>
<tr>
<td>Health status controls</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td></td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Observations</td>
<td>85,898</td>
<td>85,898</td>
<td>33,420</td>
<td>52,454</td>
<td>28,648</td>
<td>29,539</td>
</tr>
<tr>
<td>Adjusted R-squared</td>
<td>0.034</td>
<td>0.072</td>
<td>0.003</td>
<td>0.074</td>
<td>0.136</td>
<td>0.122</td>
</tr>
<tr>
<td>Dependent variable (mean)</td>
<td>0.0102</td>
<td>0.0102</td>
<td>0.0012</td>
<td>0.0158</td>
<td>0.0223</td>
<td>0.0199</td>
</tr>
</tbody>
</table>

Notes. All columns include dummies for gender, having a child, married, high school, some college, college, Hispanic, white non-Hispanic, black non-Hispanic, and Asian non-Hispanic, as well as age fixed effects, years in the U.S. fixed effects, country of birth fixed effects and state/year fixed effects. The health status controls include health excellent, very good, good, and fair dummies. Sampling weights (normalized to sum to the same value each year) are used. Households that are in their second year in the sample are dropped. Standard errors are clustered by state and country of origin cells and are reported in parentheses. Levels of significance: ** p<0.01, * p<0.05.
Appendix Tables

Table A1. Choosing Unemployment Rate Lag Structure (ACS 2001-2016)

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SSDI</td>
<td>SSDI</td>
<td>SSDI</td>
<td>SSDI</td>
</tr>
<tr>
<td>Share disagree work duty × Current year state-year unemployment rate</td>
<td>0.8768*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.409)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Share disagree work duty × State-year unemployment rate (in prior year)</td>
<td></td>
<td>1.2977**</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.419)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Share disagree work duty × State-year unemployment rate two years prior to survey</td>
<td></td>
<td></td>
<td>1.1113**</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.427)</td>
<td></td>
</tr>
<tr>
<td>Share disagree work duty × State-year unemployment rate three years prior to survey</td>
<td></td>
<td></td>
<td></td>
<td>1.1059*</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.431)</td>
</tr>
<tr>
<td>Observations</td>
<td>1,899,295</td>
<td>1,899,295</td>
<td>1,857,407</td>
<td>1,818,083</td>
</tr>
<tr>
<td>Adjusted R-squared</td>
<td>0.077</td>
<td>0.077</td>
<td>0.078</td>
<td>0.080</td>
</tr>
<tr>
<td>Dependent variable</td>
<td>0.0135</td>
<td>0.0135</td>
<td>0.0134</td>
<td>0.0134</td>
</tr>
</tbody>
</table>

Notes. For information on the sample see Table 1 and Table 2 (column 4) for information on the control variables and fixed effects included. Coefficients are estimated using linear probability models. Estimates are weighted using the appropriate person-level weights provided by the ACS. Standard errors are clustered by state and country of origin cells and are reported in parentheses. Column 2 replicates column 4 of Table 2. Levels of significance: ** p<0.01, * p<0.05.
Table A2. Share disagree work duty Response Per Country of Origin, Ranked from Largest to Smallest, IVS data

<table>
<thead>
<tr>
<th>Country</th>
<th>Share disagree work duty</th>
<th>Observations</th>
</tr>
</thead>
<tbody>
<tr>
<td>France</td>
<td>0.1003</td>
<td>9,897</td>
</tr>
<tr>
<td>Belgium</td>
<td>0.0662</td>
<td>2,044</td>
</tr>
<tr>
<td>Byelorussia</td>
<td>0.0564</td>
<td>3,364</td>
</tr>
<tr>
<td>Slovakia</td>
<td>0.0553</td>
<td>1,402</td>
</tr>
<tr>
<td>Montenegro</td>
<td>0.0533</td>
<td>416</td>
</tr>
<tr>
<td>Serbia</td>
<td>0.0469</td>
<td>972</td>
</tr>
<tr>
<td>Ukraine</td>
<td>0.0460</td>
<td>18,687</td>
</tr>
<tr>
<td>Austria</td>
<td>0.0428</td>
<td>2,526</td>
</tr>
<tr>
<td>Estonia</td>
<td>0.0416</td>
<td>250</td>
</tr>
<tr>
<td>Germany</td>
<td>0.0410</td>
<td>34,650</td>
</tr>
<tr>
<td>Indonesia</td>
<td>0.0405</td>
<td>6,396</td>
</tr>
<tr>
<td>Moldavia</td>
<td>0.0399</td>
<td>2,017</td>
</tr>
<tr>
<td>Romania</td>
<td>0.0397</td>
<td>11,544</td>
</tr>
<tr>
<td>Croatia</td>
<td>0.0392</td>
<td>2,752</td>
</tr>
<tr>
<td>Israel/Palestine</td>
<td>0.0390</td>
<td>9,780</td>
</tr>
<tr>
<td>Macedonia</td>
<td>0.0379</td>
<td>1,761</td>
</tr>
<tr>
<td>Czech Republic</td>
<td>0.0377</td>
<td>2,978</td>
</tr>
<tr>
<td>Greece</td>
<td>0.0364</td>
<td>8,515</td>
</tr>
<tr>
<td>Zambia</td>
<td>0.0348</td>
<td>351</td>
</tr>
<tr>
<td>Sweden</td>
<td>0.0341</td>
<td>3,021</td>
</tr>
<tr>
<td>South Korea</td>
<td>0.0337</td>
<td>71,899</td>
</tr>
<tr>
<td>Switzerland</td>
<td>0.0317</td>
<td>2,522</td>
</tr>
<tr>
<td>Bosnia</td>
<td>0.0314</td>
<td>8,060</td>
</tr>
<tr>
<td>Australia</td>
<td>0.0313</td>
<td>5,106</td>
</tr>
<tr>
<td>Spain</td>
<td>0.0313</td>
<td>5,261</td>
</tr>
<tr>
<td>Iceland</td>
<td>0.0310</td>
<td>316</td>
</tr>
<tr>
<td>Albania</td>
<td>0.0308</td>
<td>4,044</td>
</tr>
<tr>
<td>Finland</td>
<td>0.0305</td>
<td>1,222</td>
</tr>
<tr>
<td>Hungary</td>
<td>0.0285</td>
<td>3,910</td>
</tr>
<tr>
<td>Poland</td>
<td>0.0285</td>
<td>31,691</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>0.0281</td>
<td>28,584</td>
</tr>
<tr>
<td>Norway</td>
<td>0.0274</td>
<td>1,292</td>
</tr>
<tr>
<td>Chile</td>
<td>0.0271</td>
<td>6,050</td>
</tr>
<tr>
<td>Canada</td>
<td>0.0268</td>
<td>56,638</td>
</tr>
<tr>
<td>Netherlands</td>
<td>0.0242</td>
<td>5,531</td>
</tr>
<tr>
<td>Lithuania</td>
<td>0.0240</td>
<td>1,840</td>
</tr>
<tr>
<td>Armenia</td>
<td>0.0240</td>
<td>5,578</td>
</tr>
<tr>
<td>Latvia</td>
<td>0.0238</td>
<td>964</td>
</tr>
<tr>
<td>Denmark</td>
<td>0.0238</td>
<td>1,709</td>
</tr>
<tr>
<td>Bulgaria</td>
<td>0.0228</td>
<td>4,304</td>
</tr>
<tr>
<td>Uruguay</td>
<td>0.0209</td>
<td>3,026</td>
</tr>
<tr>
<td>Yugoslavia</td>
<td>0.0190</td>
<td>5,046</td>
</tr>
<tr>
<td>Republic of Georgia</td>
<td>0.0184</td>
<td>861</td>
</tr>
<tr>
<td>India</td>
<td>0.0182</td>
<td>124,353</td>
</tr>
<tr>
<td>Mexico</td>
<td>0.0182</td>
<td>765,509</td>
</tr>
<tr>
<td>Cyprus</td>
<td>0.0176</td>
<td>326</td>
</tr>
<tr>
<td>Italy</td>
<td>0.0152</td>
<td>19,778</td>
</tr>
<tr>
<td>Uganda</td>
<td>0.0151</td>
<td>1,297</td>
</tr>
<tr>
<td>Argentina</td>
<td>0.0143</td>
<td>11,817</td>
</tr>
<tr>
<td>South Africa (Union of)</td>
<td>0.0130</td>
<td>6,862</td>
</tr>
<tr>
<td>Japan</td>
<td>0.0125</td>
<td>20,885</td>
</tr>
<tr>
<td>Ireland</td>
<td>0.0125</td>
<td>8,400</td>
</tr>
<tr>
<td>Guatemala</td>
<td>0.0113</td>
<td>47,714</td>
</tr>
</tbody>
</table>

Continued
Table A3. Top and Bottom Response Countries, IVS data

<table>
<thead>
<tr>
<th>Statement</th>
<th>Top country</th>
<th>Bottom country</th>
</tr>
</thead>
<tbody>
<tr>
<td>Share who strongly disagree with statement:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Work is a duty towards society</td>
<td>France 10.03%</td>
<td>Egypt/United Arab Repub. 0.09%</td>
</tr>
<tr>
<td>(n=9,897)</td>
<td>(n=9,460)</td>
<td></td>
</tr>
<tr>
<td>To develop talents you need to have a job</td>
<td>Belgium 10.20%</td>
<td>Vietnam 0.12%</td>
</tr>
<tr>
<td>(n=2,044)</td>
<td>(n=99,681)</td>
<td></td>
</tr>
<tr>
<td>People who do not work turn lazy</td>
<td>Iceland 14.18%</td>
<td>Turkey 0.45%</td>
</tr>
<tr>
<td>(n=316)</td>
<td>(n=7,231)</td>
<td></td>
</tr>
<tr>
<td>Humiliating to receive money without having to work for it</td>
<td>France 18.94%</td>
<td>Turkey 1.17%</td>
</tr>
<tr>
<td>(n=9,897)</td>
<td>(n=7,231)</td>
<td></td>
</tr>
<tr>
<td>Work should come first even if it means less spare time</td>
<td>France 20.87%</td>
<td>Egypt/United Arab Repub. 0.14%</td>
</tr>
<tr>
<td>(n=9,897)</td>
<td>(n=9,460)</td>
<td></td>
</tr>
<tr>
<td>Share who say the following are always justifiable:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Claiming government benefits to which you are not entitled</td>
<td>Mexico 10.49%</td>
<td>Norway 0.43%</td>
</tr>
<tr>
<td>(n=765,509)</td>
<td>(n=1,292)</td>
<td></td>
</tr>
</tbody>
</table>

Notes. For information on the sample see Table 1. Shares are constructed using the appropriate person-level weights provided by the IVS.
<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSDI</td>
<td>1.2977**</td>
<td>1.2977**</td>
<td>1.2977**</td>
<td>1.2977**</td>
<td>1.2977**</td>
<td>1.2977**</td>
</tr>
<tr>
<td>(0.419)</td>
<td>(0.365)</td>
<td>(0.410)</td>
<td>(0.453)</td>
<td>(0.464)</td>
<td>(0.425)</td>
<td></td>
</tr>
<tr>
<td>Observations</td>
<td>1,899,295</td>
<td>1,899,295</td>
<td>1,899,295</td>
<td>1,899,295</td>
<td>1,899,295</td>
<td>1,899,295</td>
</tr>
<tr>
<td>Adjusted R-squared</td>
<td>0.077</td>
<td>0.077</td>
<td>0.077</td>
<td>0.077</td>
<td>0.077</td>
<td>0.077</td>
</tr>
<tr>
<td>Clustering</td>
<td>State-country of origin</td>
<td>State-year</td>
<td>State-year-country of origin</td>
<td>State</td>
<td>Country of origin</td>
<td>Two-way on state-year and country of origin</td>
</tr>
</tbody>
</table>

Notes. Levels of significance: ** p<0.01.